El gran volumen de datos generado en torno al COVID-19, junto a la cantidad de variables involucradas en el diagnóstico y evolución de la enfermedad, constituyen una excelente base para la aplicación de la Inteligencia Artificial, y más en concreto, de una de las disciplinas que engloba, el machine learning o algoritmos de aprendizaje automático.


Las reglas, procedimientos y valoraciones previas implantados por estas compañías para prevenir el fraude, antes de incurrir en los costes de reparación o compensación, tienen la deficiencia de que no permiten disponer de forma anticipada de una ratio o probabilidad de fraude. Esto permitiría actuar antes de la aceptación del siniestro, de una forma más pormenorizada en la revisión y gestión del daño declarado y sus causas.

Con la colaboración del grupo HM Hospitales, en NovaQuality hemos llevado a cabo un estudio en el que se evaluaban más de 400 variables de 3.000 pacientes y la evolución de esta enfermedad, entre las que se encontraban factores demográficos (edad, sexo), registros de constantes vitales, resultados de pruebas diagnósticas o tratamientos farmacológicos aplicados.

Un análisis que, además de valorar los posibles riesgos en términos de salud, ha servido para identificar cuáles son los principales ámbitos en los que la Inteligencia Artificial puede ser determinante para vencer la pandemia y que se concretan en:

• Control de las variables que tienen mayor peso en la evolución del paciente. Esta tecnología nos brinda la posibilidad de discernir qué factores van a influir decisivamente en el desarrollo de la enfermedad en cada caso, lo que facilita la toma de decisiones y la certeza de éxito.

• Anticipación ante posibles cuadros de riesgo. La Inteligencia Artificial discrimina qué valores de ciertos parámetros clínicos en su conjunto pueden suponer un mayor riesgo de que se produzca una evolución negativa. Es importante resaltar que se evalúan múltiples parámetros al mismo tiempo, lo que es posible gracias a esta tecnología.

• Estimación de tiempo de hospitalización. Teniendo en cuenta la evolución de pacientes ya ingresados y su evolución se puede predecir el tiempo necesario de hospitalización desde el primer día que un paciente es ingresado. Esto en circunstancias de alta ocupación hospitalaria es un aporte importante para mejorar la provisión de camas y material médico de los centros.

• Probabilidad de ingreso en la UCI. Además de determinar los factores de riesgo, esta tecnología evalúa también qué posibilidades existen de que el paciente pueda precisar de cuidados intensivos. Esta información es interesante desde el punto de vista clínico y también en lo que respecta a la asignación de recursos hospitalarios. 

• Recomendación de mejora de tratamiento médico. Basándose en el resultado de la administración de varios fármacos y sus resultados en diferentes grupos de pacientes, los modelos son capaces de recomendar de forma personalizada el mejor tratamiento médico para cada paciente.

• Riesgo de fallecimiento. En última instancia, las herramientas de machine learning son capaces de predecir los casos de máxima gravedad.